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ABSTRACT

Background: Environmental noise from small-scale industries, particularly powerloom clusters, is an under-
recognized public health concern in India. Older adults in these settings are especially vulnerable due to age-
related auditory decline compounded by chronic noise exposure. With expanding semi-urban industrializa-
tion and a growing elderly population, noise-induced hearing loss (NIHL) is emerging as a significant yet over-
looked health burden. This study estimated the prevalence of NIHL among elderly residents near powerloom
industries and evaluated key predictors and machine learning models for community-level screening.

Methodology: A community-based cross-sectional study was conducted in Kumarapalayam, Tamil Nadu,
among 436 adults aged =60 years. Participants were categorized into an exposed group (n = 218; residing
<500 m from powerloom units) and a control group (n = 218; residing >2 km away). Environmental noise lev-
els were recorded using standardized sound level meter, showing substantially higher mean daytime noise
exposure among the exposed group (77.6 = 5.67 dB) compared to the control group (52.35 * 3.95 dB). Hear-
ing thresholds were assessed using validated mobile audiometry. Four ML classification models Random For-
est, Support Vector Machine (SVM), k-Nearest Neighbor (KNN), and Logistic Regression were trained and
evaluated to predict NIHL from demographic and exposure-related variables.

Results: Bilateral hearing loss was markedly higher in the exposed group (65.14%) than in the control group
(35.18%). Random Forest demonstrated the strongest performance, achieving an accuracy of 93.4%, a preci-
sion of 93.0%, and a recall of 93.2%, outperforming the other models. Predictive variables such as age, prox-
imity to powerloom units, duration of residence, and measured environmental noise levels played significant
roles in model performance.

Conclusions: Elderly individuals residing near powerloom industries experience significantly greater noise
exposure and a correspondingly higher prevalence of NIHL. Machine learning demonstrates strong potential
as a practical, field-friendly tool for early identification of at-risk individuals in resource-limited settings.
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INTRODUCTION

Noise-induced hearing loss (NIHL) is a major but
preventable public health concern, affecting approx-
imately 430 million people worldwide, with chronic
exposure to noise above 85 dB recognized as a pri-
mary cause.! Although extensively studied in occupa-
tional settings, particularly in textile and powerloom
industries,? its impact on elderly residents living near
these industrial zones who experience continuous
environmental noise is largely unknown. Older
adults are especially vulnerable due to age-related
hearing decline (presbycusis) and common comor-
bidities, often resulting in speech comprehension dif-
ficulties, tinnitus, and hyperacusis.3#*

Machine learning (ML) is increasingly applied in
healthcare for disease prediction, risk stratification,
and patient monitoring,’ yet it has not been used to
predict NIHL in this population. By integrating fac-
tors such as age, noise exposure, duration of resi-
dence, and comorbidities, ML can identify high-risk
individuals and support targeted community inter-
ventions. In audiology, artificial intelligence (AI) has
already improved diagnostic accuracy, optimized
hearing aid and cochlear implant performance, and
expanded tele-audiology access.®

The study aimed to assess the prevalence of noise-
induced hearing loss among elderly individuals re-
siding near powerloom industries in comparison
with those living in non-industrial areas, identify key
demographic, clinical, and environmental factors as-
sociated with hearing loss, and develop and evaluate
machine learning models using community-level var-
iables to predict NIHL, with the objective of propos-
ing a scalable, data-driven framework for early iden-
tification of high-risk elderly populations in industri-
ally exposed communities.

METHODOLOGY

Study Design and Sample: A community-based
cross-sectional study was conducted among 436 el-
derly adults (260 years). Participants were divided
equally into an exposed group (n = 218) residing
within 500 m of powerloom clusters and a control
group (n = 218) residing >2 km away. The minimum
required sample size was 218, calculated using pow-
er analysis with 80% power, 5% types I error, an ef-
fect size of 0.3, and a 95% confidence level. Equal re-
cruitment of exposed and control participants was
undertaken to enable epidemiological comparison
between groups. Machine learning modeling was
performed exclusively in the powerloom-exposed
cohort (n = 218) to train and evaluate established
machine learning algorithms for the prediction of
hearing loss. Random sampling was employed within
each stratum to minimize selection bias.

Inclusion criteria comprised =3 years residence in
study area with documented noise exposure >70 dB
(exposed) or <55 dB (control). Exclusion criteria in-
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cluded prior occupational noise exposure, docu-
mented hearing impairment, otological pathology,
cranial trauma, ototoxic medication history, cogni-
tive impairment and comorbid condition like hyper-
tension, diabetes mellitus, cardiovascular conditions
precluding informed consent.

Sampling Procedure: Systematic door-to-door sam-
pling was employed. In each selected street, every
3rd household was approached based on a sampling
interval calculated from the total number of house-
holds in the sampling frame divided by the required
sample per cluster (k = N/n = 3). This ensured near-
random household selection while maintaining fea-
sibility. Only one eligible participant per household
was randomly selected using a Kish grid method to
avoid clustering bias.

Noise Exposure Assessment: Environmental noise
levels were assessed using QAWACHH Digital Profes-
sional Sound Level Meters (Model 1351-EN-00;
range: 30-130 dBA; accuracy: 1.5 dB), compliant
with IEC 651 Type 2 and ANSI S1.4 Type 2 standards.
All instruments were laboratory-calibrated prior to
deployment and underwent daily field calibration.
Research personnel completed a standardized three-
day training program in noise measurement proce-
dures under the supervision of a certified acoustic
engineer to ensure methodological consistency.
Noise measurements were collected at four time
points per day (08:00, 12:00, 16:00, 20:00) across
three days, including one weekend day, to capture di-
urnal and weekday-weekend variability. For each
household, six measurement locations were assessed
three indoor (living room, bedroom, kitchen) and
three outdoor (front entrance, backyard, and either
the nearest point to the powerloom facility for the
exposed group or the nearest major road for the con-
trol group). Each measurement session lasted 15
minutes, with sound levels logged every 5 seconds,
and mean values were computed to derive repre-
sentative exposure levels. The final aggregated expo-
sure values showed substantially higher noise levels
in the exposed group (77.66 * 5.67 dB) compared
with the control group (52.35 *+ 3.95 dB), consistent
with typical semi-urban residential environments
and well below CPCB limits for the control area.

Hearing Assessment: Hearing function was evaluat-
ed using the Hearing Test Pro™ mobile audiometry
application (version 2.4, e-audiologia.pl) installed on
calibrated Samsung Galaxy A23 smartphones. The
application has demonstrated high concordance with
conventional pure-tone audiometry in prior stud-
ies,”8 with reported sensitivity of 93.3% and specific-
ity of 94.2% for detecting hearing loss >25 dB HL. A
local validation study conducted prior to the main
survey (n = 60; age 60-85 years) showed substantial
agreement with clinical audiometry (Cohen’s k =
0.84).

Frequency-specific validation revealed acceptable ac-
curacy across audiometric ranges, consistent with
published Bland-Altman limits of agreement: Low
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frequencies (250-1,000 Hz): *4-6 dB; Speech fre-
quencies (500-2,000 Hz): +3-5 dB; and High frequen-
cies (2,000-8,000 Hz): +5-8 dB

Audiometric assessments were performed in quiet
indoor environments with ambient noise maintained
below 50 dBA. Daily calibration included verification
with an acoustic calibrator and impedance checks of
headphones. Tests exhibiting excessive intra-test var-
iability (>10 dB threshold fluctuation) or high false-
positive responses (>15%) were repeated to ensure
reliability.

Prior to data collection, a two-week pilot study in-
volving 30 participants (excluded from final analysis)
was conducted to evaluate feasibility, refine data col-
lection tools, and optimize procedural logistics.
Based on pilot findings, adjustments were made to
the questionnaire structure, testing environment
setup, and participant scheduling protocols.

Hearing thresholds were classified based on World
Health Organization criteria: Normal: <25 dB HL;
Mild: 26-40 dB HL; Moderate: 41-60 dB HL; Severe:
61-80 dB HL; and Profound: >80 dB HL

Participants were categorized as having hearing loss
if thresholds exceeded 25 dB HL in at least one ear.
Pure-tone averages were calculated for low (250-
1,000 Hz), speech (500-2,000 Hz), and high (2,000-
8,000 Hz) frequency ranges.

Statistical Analysis and Machine Learning Im-
plementation: Data normality was assessed using
the Kolmogorov-Smirnov test, confirming non-
normal distribution; therefore, continuous variables
were summarized as medians with minimum-
maximum values. Group comparisons were per-
formed using the Kruskal-Wallis test, with statistical
significance set at p< 0.05. The primary outcome for
machine learning classification was the presence of
hearing loss, defined using WHO criteria as >25 dB
HL in one or both ears.

Four supervised ML algorithms Random Forest, Sup-
port Vector Machine (linear Kkernel), K-Nearest
Neighbors (k = 5), and Logistic Regression were de-
veloped using 14 input features spanning demo-
graphic factors (age, sex, education), exposure pa-
rameters (residential duration, noise level), health
variables (BMI, smoking, alcohol use, hypertension,
diabetes, ototoxic medication use), and audiological
symptoms (tinnitus, hyperacusis, speech perception
difficulty). Data preprocessing included categorical
encoding, missing value imputation (mean/mode),
and feature scaling. The dataset was partitioned into
an 80:20 training-testing split, and 5-fold cross-
validation was applied for internal validation.

Feature importance was evaluated using two com-
plementary methods: Gini importance (Mean De-
crease in Impurity) within the Random Forest model
and SHAP values to quantify marginal contributions
of each predictor. Variables such as age, residential
noise exposure, duration of residence, comorbidities,
and tinnitus demonstrated the highest SHAP impact
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scores. Model performance was assessed using accu-
racy, precision, recall, F1-score, and area under re-
ceiver operating characteristic curve. All statistical
and ML analyses were conducted using Python
(scikit-learn).

Ethical Considerations: The study was approved by
the Institutional Ethics Committee of JKKN College of
Pharmacy (Approval No. JKKNCP/IEC-
CER/0172124/38, dated 17/02/2024) and adhered
to the Declaration of Helsinki and ICMR guidelines.
All participants received study information in Tamil,
and written informed consent was obtained. A brief
cognitive screening (Mini-Cog Tamil version) was
performed to ensure capacity for consent; those with
cognitive impairment were excluded. For partici-
pants >75 years or those with borderline compre-
hension, consent was reconfirmed through conversa-
tional assessment, and a legally authorised repre-
sentative was involved when necessary. Privacy and
confidentiality were ensured throughout data collec-
tion. No financial incentives were provided, but each
participant received a free hearing assessment report
and referral advice when hearing loss was identified.
The study involved minimal risk, and all procedures
were conducted in quiet indoor environments with
noise levels maintained below 50 dB to ensure the
validity of audiometric testing.

RESULTS

Median age was comparable between exposed and
control groups (64.0 vs 64.5 years), while residential
noise levels were substantially higher among power-
loom residents (77.7 dB vs 52.4 dB), along with a
greater prevalence of tinnitus (23.9% vs 8.3%) and
hyperacusis (14.2% vs 3.7%) (Table 1).

Bilateral hearing loss was markedly more common in
the exposed group (65.1%) than in controls (35.8%),
whereas normal hearing was less frequent among
exposed participants (15.1% vs 42.2%) (Table 2).

Moderate-to-severe hearing loss in both ears was
more prevalent among powerloom residents, while
normal hearing predominated in non-powerloom
residents (Table 3).

Among machine learning models, Random Forest
demonstrated the highest accuracy (93.4%), fol-
lowed by SVM (92.1%), outperforming logistic re-
gression and KNN (Table 4).

The target variable for machine-learning classifica-
tion was binary: hearing loss (>25 dB HL in one or
both ears) versus normal hearing (<25 dB HL bilat-
erally). In the exposed group (n = 218), 185 partici-
pants (84.86%) had hearing loss (43 unilateral; 142
bilateral), while 33 participants (15.14%) had nor-
mal hearing. This class distribution was considered
during model evaluation, and precision, recall, F1-
score, and accuracy were reported to account for
class imbalance.
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Table 1: Sociodemographic, Environmental, and Clinical Characteristics of Study Participants in Ku-
marapalayam, Tamil Nadu (N=218)

Characteristics Exposed Group (n=218) Control Group (n=218) P Value
(<500m from powerloom) (>2km from powerloom)
Sociodemographic Factors
Age, years, median (min-max) 64.0 (60.0-90.0) 64.5 (60-90) 0.4815
Age categories, n (%) 0.6948
60-65 years 130 (59.6) 135 (61.9)
66-70 years 30 (13.8) 39 (17.9)
71-75 years 28(12.8) 22 (10.1)
>75 years 30(13.8) 22 (10.1)
Sex, n (%) 0.0534
Male 49 (22.5) 38(17.4)
Female 169 (77.5) 180 (82.6)
Exposure Parameters
Duration of residence, years 21.0 (3.0-48.0) 18 (3-41) 0.037
3-10 years, n (%) 78 (35.8) 30 (28.3)
11-20 years, n (%) 47 (21.6) 34 (32.1)
21-30 years, n (%) 32 (14.7) 29 (27.4)
>30 years, n (%) 61 (28.0) 13 (12.2)
Environmental Noise Measurements
Average noise level at residence, dB 77.66 +5.67 52.35+3.95
Health And Lifestyle Factors
Current smoker, n (%) 49 (22.5) 38(17.4) 0.0534
Alcohol use, n (%) 44 (20.2) 33 (15.1) 0.1162
Tinnitus, n (%) 52 (23.9) 18 (8.3) <0.001
Hyperacusis, n (%) 31 (14.2) 8 (3.7) <0.001

WHO: World Health Organization continuous variables presented as Mean+SD or median (min-max) based on distribution on P values;
Independent t-test/Mann-Whitney U test for continuous; x?2 test for categorical variables

Table 2: Hearing outcome distribution among study participants with 95% Confidence Intervals (CI)

Outcome

Exposed Group (n=218)

Control Group (n=218)

Cases (%)

Confidence Interval

Control (%) Confidence Interval

Normal hearing (<25 dB HL) 33(15.14) 10.99% to 20.50% 92 (42.2) 35.84% to 48.84%
Unilateral hearing loss 43 (19.72) 14.99% to 25.51% 48 (22.02) 17.03% to 27.98%
Bilateral hearing loss 142 (65.14) 58.60% to 71.15% 78 (35.78) 29.71% to 42.34%

Table 3: Distribution of grade of hearing loss in Powerloom and Non-Powerloom residents

WHO Grade of hearing loss

Powerloom residents (n=218)

Non-Powerloom residents (n=218)

Right ear (%) Left ear (%) Right ear (%) Left ear (%)
Normal 61 (28) 48 (22) 118 (54) 113 (52)
Mild 74 (34) 74 (34) 66 (30) 73 (33)
Moderate 60 (27) 67 (31) 31 (14) 23 (11)
Severe 23 (11) 29 (13) 3(2) 9 (4)

Table 4: Machine Learning Model Performance for Predicting Hearing Loss in Elderly Residents Ex-

posed to Powerloom Noise

Model Precision Recall F1-Score Accuracy
Logistic Regression 81.3% 79.5% 79.9% 79.5%
Random Forest 93.0% 93.2% 93.0% 93.4%
SVM (Linear Kernel) 92.2% 92.2% 92.1% 92.1%
K-Nearest Neighbours 88.3% 88.6% 87.7% 88.6%

Receiver Operating Characteristic (ROC) (Figure 1)
curves illustrating the discriminatory performance of
the four supervised machine learning models Lo-
gistic Regression, Support Vector Machine (Linear
Kernel), K-Nearest Neighbors (k = 5), and Random
Forest in predicting hearing loss among elderly resi-
dents exposed to powerloom-associated environ-
mental noise. The x-axis represents the False Positive
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Rate (1 - Specificity), and the y-axis represents the
True Positive Rate (Sensitivity). The area under the
ROC curve (AUC) quantifies model accuracy, with
higher AUC values indicating superior classification
performance. The Random Forest model demon-
strated the highest AUC, consistent with its highest
accuracy (93.4%), precision (93.0%), recall (93.2%),
and F1-score (93.0%), followed by SVM and KNN.
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The ROC curves highlight the strong predictive capa-
bility of ensemble methods for community-level
hearing loss risk stratification. The curves were gen-
erated using the study dataset of powerloom-
exposed elderly participants (n = 218).

Confusion matrix (figure 2) depicting the classifica-
tion performance of the Random Forest model in
predicting hearing loss (hearing threshold >25 dB HL
in one or both ears) versus normal hearing among
elderly participants. The x-axis denotes the predicted
class (hearing loss vs normal hearing), and the y-axis
denotes the actual observed class. The matrix dis-
plays the number of true positives (correctly identi-

ROC Curve for Random Forest
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Figure 1: ROC Curve for Model Performance in
Predicting Type of Hearing Loss
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fied hearing-loss cases), true negatives (correctly
identified normal-hearing cases), false positives
(normal individuals misclassified as hearing loss),
and false negatives (hearing-loss individuals misclas-
sified as normal). The high proportion of true posi-
tive and true negative classifications reflects the
model’s excellent discrimination ability, further sup-
ported by its overall accuracy of 93.4%. This figure
supports the utility of Random Forest modeling as a
reliable tool for early detection of noise-induced
hearing loss in community settings. This matrix was
derived from the study dataset of powerloom-
exposed elderly residents (n = 218).

Random Forest Confusion Matrix

Narmal

Unilateral

Actual

Bilateral

Normal Unilateral Bilateral
Predicted

Figure 2: Confusion Matrix for Random Forest
Model Performance

Feature Importance for Random Forest

RIGHT HEARING LEVEL (IN DECIBEL)

LEFT HEARING LEVEL (IN DECIBEL)

Grade of hearing loss in Right

Grade of hearing loss in Left

Distance from powerloom (in meter)

Feature

Noise level (in decibel)

How many years you have been living in the current residential area?

AGE (in Years)

GENDER

AGE GROUP

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Importance

Figure 3: Feature importance derived from the Random Forest model for predicting hearing loss
among elderly residents

Feature importance values represent the relative
contribution of each predictor to the model’s classifi-
cation of hearing loss status (figure 3). The x-axis
represents the relative feature importance score
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(mean decrease in impurity), and the y-axis lists the
predictor variables included in the model. Higher
importance scores indicate greater influence on
model predictions. Importance estimates were calcu-
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lated using the mean decrease in impurity across all
decision trees in the Random Forest algorithm. These
values reflect internal model behavior and should be
interpreted as associative rather than causal rela-
tionships. Feature importance was computed using
the study dataset of powerloom-exposed elderly par-
ticipants (n = 218).

DISCUSSION

The present study demonstrates a significantly high-
er prevalence of bilateral hearing loss among elderly
residents living near powerloom industries (65.14%)
compared to control populations (35.18%), with a
Random Forest machine learning model achieving
93.0% accuracy in predicting hearing loss. These
findings contribute to the growing body of evidence
linking environmental noise exposure to accelerated
hearing impairment in aging populations and high-
light the potential of machine learning approaches
for community-based hearing health surveillance.

Contextualization Within Environmental Noise
Research: The exposed elderly group showed a
higher bilateral hearing loss prevalence (65.14%)
than community estimates such as the 38.3% report-
ed by Chen X et al.? (2023), who also identified in-
creased impairment risk near major roadways. The
recorded noise levels, ranging from 101.6 to 109.8
dB(A), were evaluated in comparison with OSHA and
WHO occupational noise exposure standards.1?

The control group prevalence (35.18%) is consistent
with age-related hearing loss patterns in developing
regions, with Verma RR et al.1? (2021) reported that
hearing impairment prevalence was higher among
elderly populations in India compared with younger
age groups.

Machine Learning Performance in Context: Our
Random Forest model achieved 88.6% accuracy,
comparable to recent studies, despite using only de-
mographic and exposure variables rather than com-
plex audiometric data, similar to Machine learning
models using NHANES data effectively predicted
hearing loss and hearing thresholds, with Light Gra-
dient Boosting showing the best performance (80.1%
accuracy for mild hearing loss and >86% for higher
thresholds); age, gender, blood pressure, and waist
circumference emerged as key factors, highlighting
the potential for early, risk-based hearing loss detec-
tion.12

Industrial Noise Exposure and Community
Health: Textile mill weavers exposed to 101.3 * 2.7
dBA show reduced hearing acuity.!3 Our community-
based study extends this concern to nearby elderly
residents, with 67% prevalence compared to 71.6%
among workers,14 highlighting cumulative health im-
pacts from long-term residential exposure. Industrial
noise often exceeds CPCB residential limits (55 dB
day/45 dB night),!5 and inadequate buffer zones like-
ly contribute to the elevated hearing loss observed.
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Interaction Between Aging and Noise Exposure:
Longitudinal research indicates that aging-related
decline interacts with prior noise exposure. In the
Framingham cohort, noise-affected ears showed fast-
er threshold deterioration across frequencies, sug-
gesting heightened vulnerability rather than a direct
causal pathway.1¢ Shared mechanisms such as oxida-
tive stress, mitochondrial dysfunction, synaptopathy,
and cochlear vascular compromise link presbycusis
and NIHL. In C57BL/6 mice, early noise exposure in-
tensified later oxidative stress and vascular dysregu-
lation through pathways involving antioxidant im-
balance and HIF-1a/VEGFC signaling.# Chronic noise
also induces central auditory changes.l” Early-life
subclinical damage can prime delayed neural degen-
eration, accelerating age-related decline.18

Public Health Implications and Interventions: The
hearing loss burden observed warrants coordinated
public health action. The societal economic burden of
age-related hearing loss is estimated at approximate-
ly $297,000 per affected individual over their life-
time. This substantial cost stems primarily from re-
duced employment opportunities, diminished work-
place productivity, and elevated healthcare
expenditures.l? In 2019, the global economic burden
of hearing loss exceeded $981 billion (PPP-adjusted),
with 47% attributable to quality-of-life losses and
32% to additional health-related costs; 57% of total
costs occurred in low- and middle-income countries,
6.5% were incurred among children aged 0-14 years,
and a modelled 5% reduction in prevalence was as-
sociated with potential savings of approximately $49
billion worldwide. Even modest decreases in the
prevalence or severity of hearing loss could prevent
significant economic burdens on society.20

Mobile Audiometry Applications: Mobile audiome-
try supports community screening as a feasible op-
tion in resource-limited settings. Validation work
from South Africa shows smartphone-based audiom-
etry can perform reliably in untreated primary
health-care clinics, with conventional thresholds ex-
ceeding 15 dB HL corresponding to smartphone
thresholds within <10 dB in 92.9% of cases (average
difference -1.0 dB * 7.1 SD).2! Yalamanchali S et al.22
(2022) reported 89% sensitivity and 70% specificity
in Indian populations. However, the lack of frequen-
cy-specific thresholds in our study limits distinguish-
ing the NIHL 4 kHz notch from presbycusis’ gradual
slope.23

Comparison with Regional Studies: Regional stud-
ies show higher hearing loss in lower- and middle-
income countries due to limited care and greater
noise exposure;Z* our semi-urban industrial setting
reflects this combined risk.

Comparison With Similar Indian NIHL Studies:
Industrial and construction studies similarly report
significant high-frequency loss, dose-response pat-
terns, and modifiable workplace contributors.25:26
Powerloom research further confirms the auditory
impact of long-term loom noise.l4#27 Most Indian
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NIHL research focuses on workers in transportation,
industry, construction, or powerloom sectors,
whereas our study examines non-workers communi-
ty residents living near powerloom units. Evidence of
gradual, bilateral loss in our sample indicates that
community-level noise from powerlooms can ap-
proximate occupational intensity, underscoring the
need to address residential noise regulation and
screening.

STRENGTHS AND LIMITATIONS

Several limitations warrant consideration in inter-
preting our findings. The cross-sectional design pre-
cludes causal inference and cannot establish whether
current hearing loss resulted from cumulative life-
time exposure or recent industrial noise. Longitudi-
nal studies tracking hearing changes in relation to
documented noise exposure would strengthen cau-
sality assessment.28 The use of mobile audiometry,
while enabling community-based screening, lacks the
precision of clinical audiometry performed in sound-
treated booths. This may have introduced misclassi-
fication bias, particularly in distinguishing mild de-
grees of impairment. The absence of frequency-
specific audiometric data represents a significant
limitation, as it prevented detailed characterization
of audiometric notch patterns typically associated
with noise-induced hearing loss. The study did not
assess lifetime occupational or recreational noise ex-
posure, which limits the ability to attribute observed
hearing loss solely to current industrial noise
sources. Individual noise dosimetry was not con-
ducted, preventing quantification of dose-response
relationships. Potential selection bias may also exist
if healthier elderly individuals were more likely to
participate.

The study’s strengths include its community-based
design, robust sample size, and use of validated mo-
bile audiometry for real-world applicability. Addi-
tionally, integrating machine learning models en-
hanced predictive accuracy for early detection of
hearing loss in vulnerable populations.

This study highlights several priorities for future re-
search. Longitudinal cohort studies with baseline au-
diometry and regular follow-up would clarify the
temporal relationship between industrial noise ex-
posure and hearing loss progression. Environmental
noise mapping combined with personal dosimetry
would enable dose-response modeling. Inclusion of
complete frequency-specific audiometric profiles
would support more precise differentiation between
presbycusis and noise-induced patterns. Incorporat-
ing biomarkers of oxidative stress and inflammation
may elucidate mechanistic pathways underlying the
interaction between noise and aging. Implementa-
tion research should evaluate culturally appropriate
hearing conservation interventions for communities
near industrial settings. The high accuracy of ma-
chine learning models suggests strong potential for
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risk-prediction tools that integrate environmental
exposure data, demographic characteristics, and
symptom-based screening.

CONCLUSION

The present study demonstrates a significantly high-
er prevalence of hearing loss among elderly resi-
dents living near powerloom industries, indicating
that prolonged exposure to elevated environmental
noise poses a substantial public health concern. Alt-
hough the machine learning model showed encour-
aging predictive performance, these results should
be interpreted as preliminary and require external
validation before broader application. The findings
highlight the need for targeted community screening
programs for older adults in high-noise localities,
stricter enforcement of residential noise regulations,
and implementation of zoning strategies to mitigate
industrial noise encroachment into living areas.
Strengthening environmental noise surveillance and
integrating periodic hearing assessment into geriat-
ric care pathways may help reduce the long-term
burden of preventable auditory impairment in indus-
trially adjacent communities. Future research should
prioritize longitudinal designs and detailed exposure
assessments to better characterize the progression
of noise-related hearing decline.
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