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A B S T R A C T 
Background: Environmental noise from small-scale industries, particularly powerloom clusters, is an under-
recognized public health concern in India. Older adults in these settings are especially vulnerable due to age-
related auditory decline compounded by chronic noise exposure. With expanding semi-urban industrializa-
tion and a growing elderly population, noise-induced hearing loss (NIHL) is emerging as a significant yet over-
looked health burden. This study estimated the prevalence of NIHL among elderly residents near powerloom 
industries and evaluated key predictors and machine learning models for community-level screening. 

Methodology: A community-based cross-sectional study was conducted in Kumarapalayam, Tamil Nadu, 
among 436 adults aged ≥60 years. Participants were categorized into an exposed group (n = 218; residing 
<500 m from powerloom units) and a control group (n = 218; residing >2 km away). Environmental noise lev-
els were recorded using standardized sound level meter, showing substantially higher mean daytime noise 
exposure among the exposed group (77.6 ± 5.67 dB) compared to the control group (52.35 ± 3.95 dB). Hear-
ing thresholds were assessed using validated mobile audiometry. Four ML classification models Random For-
est, Support Vector Machine (SVM), k-Nearest Neighbor (KNN), and Logistic Regression were trained and 
evaluated to predict NIHL from demographic and exposure-related variables. 

Results: Bilateral hearing loss was markedly higher in the exposed group (65.14%) than in the control group 
(35.18%). Random Forest demonstrated the strongest performance, achieving an accuracy of 93.4%, a preci-
sion of 93.0%, and a recall of 93.2%, outperforming the other models. Predictive variables such as age, prox-
imity to powerloom units, duration of residence, and measured environmental noise levels played significant 
roles in model performance. 

Conclusions: Elderly individuals residing near powerloom industries experience significantly greater noise 
exposure and a correspondingly higher prevalence of NIHL. Machine learning demonstrates strong potential 
as a practical, field-friendly tool for early identification of at-risk individuals in resource-limited settings. 
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INTRODUCTION 

Noise-induced hearing loss (NIHL) is a major but 
preventable public health concern, affecting approx-
imately 430 million people worldwide, with chronic 
exposure to noise above 85 dB recognized as a pri-
mary cause.1 Although extensively studied in occupa-
tional settings, particularly in textile and powerloom 
industries,2 its impact on elderly residents living near 
these industrial zones who experience continuous 
environmental noise is largely unknown. Older 
adults are especially vulnerable due to age-related 
hearing decline (presbycusis) and common comor-
bidities, often resulting in speech comprehension dif-
ficulties, tinnitus, and hyperacusis.3,4 

Machine learning (ML) is increasingly applied in 
healthcare for disease prediction, risk stratification, 
and patient monitoring,5 yet it has not been used to 
predict NIHL in this population. By integrating fac-
tors such as age, noise exposure, duration of resi-
dence, and comorbidities, ML can identify high-risk 
individuals and support targeted community inter-
ventions. In audiology, artificial intelligence (AI) has 
already improved diagnostic accuracy, optimized 
hearing aid and cochlear implant performance, and 
expanded tele-audiology access.6 

The study aimed to assess the prevalence of noise-
induced hearing loss among elderly individuals re-
siding near powerloom industries in comparison 
with those living in non-industrial areas, identify key 
demographic, clinical, and environmental factors as-
sociated with hearing loss, and develop and evaluate 
machine learning models using community-level var-
iables to predict NIHL, with the objective of propos-
ing a scalable, data-driven framework for early iden-
tification of high-risk elderly populations in industri-
ally exposed communities. 
 

METHODOLOGY 

Study Design and Sample: A community-based 
cross-sectional study was conducted among 436 el-
derly adults (≥60 years). Participants were divided 
equally into an exposed group (n = 218) residing 
within 500 m of powerloom clusters and a control 
group (n = 218) residing >2 km away. The minimum 
required sample size was 218, calculated using pow-
er analysis with 80% power, 5% types I error, an ef-
fect size of 0.3, and a 95% confidence level. Equal re-
cruitment of exposed and control participants was 
undertaken to enable epidemiological comparison 
between groups. Machine learning modeling was 
performed exclusively in the powerloom-exposed 
cohort (n = 218) to train and evaluate established 
machine learning algorithms for the prediction of 
hearing loss. Random sampling was employed within 
each stratum to minimize selection bias. 

Inclusion criteria comprised ≥3 years residence in 
study area with documented noise exposure >70 dB 
(exposed) or <55 dB (control). Exclusion criteria in-

cluded prior occupational noise exposure, docu-
mented hearing impairment, otological pathology, 
cranial trauma, ototoxic medication history, cogni-
tive impairment and comorbid condition like hyper-
tension, diabetes mellitus, cardiovascular conditions 
precluding informed consent. 

Sampling Procedure: Systematic door-to-door sam-
pling was employed. In each selected street, every 
3rd household was approached based on a sampling 
interval calculated from the total number of house-
holds in the sampling frame divided by the required 
sample per cluster (k = N/n ≈ 3). This ensured near-
random household selection while maintaining fea-
sibility. Only one eligible participant per household 
was randomly selected using a Kish grid method to 
avoid clustering bias. 

Noise Exposure Assessment: Environmental noise 
levels were assessed using QAWACHH Digital Profes-
sional Sound Level Meters (Model 1351-EN-00; 
range: 30-130 dBA; accuracy: ±1.5 dB), compliant 
with IEC 651 Type 2 and ANSI S1.4 Type 2 standards. 
All instruments were laboratory-calibrated prior to 
deployment and underwent daily field calibration. 
Research personnel completed a standardized three-
day training program in noise measurement proce-
dures under the supervision of a certified acoustic 
engineer to ensure methodological consistency. 
Noise measurements were collected at four time 
points per day (08:00, 12:00, 16:00, 20:00) across 
three days, including one weekend day, to capture di-
urnal and weekday-weekend variability. For each 
household, six measurement locations were assessed 
three indoor (living room, bedroom, kitchen) and 
three outdoor (front entrance, backyard, and either 
the nearest point to the powerloom facility for the 
exposed group or the nearest major road for the con-
trol group). Each measurement session lasted 15 
minutes, with sound levels logged every 5 seconds, 
and mean values were computed to derive repre-
sentative exposure levels. The final aggregated expo-
sure values showed substantially higher noise levels 
in the exposed group (77.66 ± 5.67 dB) compared 
with the control group (52.35 ± 3.95 dB), consistent 
with typical semi-urban residential environments 
and well below CPCB limits for the control area. 

Hearing Assessment: Hearing function was evaluat-
ed using the Hearing Test Pro™ mobile audiometry 
application (version 2.4, e-audiologia.pl) installed on 
calibrated Samsung Galaxy A23 smartphones. The 
application has demonstrated high concordance with 
conventional pure-tone audiometry in prior stud-
ies,7,8 with reported sensitivity of 93.3% and specific-
ity of 94.2% for detecting hearing loss >25 dB HL. A 
local validation study conducted prior to the main 
survey (n = 60; age 60-85 years) showed substantial 
agreement with clinical audiometry (Cohen’s κ = 
0.84). 

Frequency-specific validation revealed acceptable ac-
curacy across audiometric ranges, consistent with 
published Bland-Altman limits of agreement: Low 
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frequencies (250-1,000 Hz): ±4-6 dB; Speech fre-
quencies (500-2,000 Hz): ±3-5 dB; and High frequen-
cies (2,000-8,000 Hz): ±5-8 dB 

Audiometric assessments were performed in quiet 
indoor environments with ambient noise maintained 
below 50 dBA. Daily calibration included verification 
with an acoustic calibrator and impedance checks of 
headphones. Tests exhibiting excessive intra-test var-
iability (>10 dB threshold fluctuation) or high false-
positive responses (>15%) were repeated to ensure 
reliability. 

Prior to data collection, a two-week pilot study in-
volving 30 participants (excluded from final analysis) 
was conducted to evaluate feasibility, refine data col-
lection tools, and optimize procedural logistics. 
Based on pilot findings, adjustments were made to 
the questionnaire structure, testing environment 
setup, and participant scheduling protocols. 

Hearing thresholds were classified based on World 
Health Organization criteria: Normal: ≤25 dB HL; 
Mild: 26-40 dB HL; Moderate: 41-60 dB HL; Severe: 
61-80 dB HL; and Profound: >80 dB HL 

Participants were categorized as having hearing loss 
if thresholds exceeded 25 dB HL in at least one ear. 
Pure-tone averages were calculated for low (250-
1,000 Hz), speech (500-2,000 Hz), and high (2,000-
8,000 Hz) frequency ranges. 

Statistical Analysis and Machine Learning Im-
plementation: Data normality was assessed using 
the Kolmogorov-Smirnov test, confirming non-
normal distribution; therefore, continuous variables 
were summarized as medians with minimum-
maximum values. Group comparisons were per-
formed using the Kruskal-Wallis test, with statistical 
significance set at p< 0.05. The primary outcome for 
machine learning classification was the presence of 
hearing loss, defined using WHO criteria as >25 dB 
HL in one or both ears. 

Four supervised ML algorithms Random Forest, Sup-
port Vector Machine (linear kernel), K-Nearest 
Neighbors (k = 5), and Logistic Regression were de-
veloped using 14 input features spanning demo-
graphic factors (age, sex, education), exposure pa-
rameters (residential duration, noise level), health 
variables (BMI, smoking, alcohol use, hypertension, 
diabetes, ototoxic medication use), and audiological 
symptoms (tinnitus, hyperacusis, speech perception 
difficulty). Data preprocessing included categorical 
encoding, missing value imputation (mean/mode), 
and feature scaling. The dataset was partitioned into 
an 80:20 training-testing split, and 5-fold cross-
validation was applied for internal validation. 

Feature importance was evaluated using two com-
plementary methods: Gini importance (Mean De-
crease in Impurity) within the Random Forest model 
and SHAP values to quantify marginal contributions 
of each predictor. Variables such as age, residential 
noise exposure, duration of residence, comorbidities, 
and tinnitus demonstrated the highest SHAP impact 

scores. Model performance was assessed using accu-
racy, precision, recall, F1-score, and area under re-
ceiver operating characteristic curve. All statistical 
and ML analyses were conducted using Python 
(scikit-learn). 

Ethical Considerations: The study was approved by 
the Institutional Ethics Committee of JKKN College of 
Pharmacy (Approval No. JKKNCP/IEC-
CER/0172I24/38, dated 17/02/2024) and adhered 
to the Declaration of Helsinki and ICMR guidelines. 
All participants received study information in Tamil, 
and written informed consent was obtained. A brief 
cognitive screening (Mini-Cog Tamil version) was 
performed to ensure capacity for consent; those with 
cognitive impairment were excluded. For partici-
pants >75 years or those with borderline compre-
hension, consent was reconfirmed through conversa-
tional assessment, and a legally authorised repre-
sentative was involved when necessary. Privacy and 
confidentiality were ensured throughout data collec-
tion. No financial incentives were provided, but each 
participant received a free hearing assessment report 
and referral advice when hearing loss was identified. 
The study involved minimal risk, and all procedures 
were conducted in quiet indoor environments with 
noise levels maintained below 50 dB to ensure the 
validity of audiometric testing. 

 

RESULTS 

Median age was comparable between exposed and 
control groups (64.0 vs 64.5 years), while residential 
noise levels were substantially higher among power-
loom residents (77.7 dB vs 52.4 dB), along with a 
greater prevalence of tinnitus (23.9% vs 8.3%) and 
hyperacusis (14.2% vs 3.7%) (Table 1). 

Bilateral hearing loss was markedly more common in 
the exposed group (65.1%) than in controls (35.8%), 
whereas normal hearing was less frequent among 
exposed participants (15.1% vs 42.2%) (Table 2). 

Moderate-to-severe hearing loss in both ears was 
more prevalent among powerloom residents, while 
normal hearing predominated in non-powerloom 
residents (Table 3). 

Among machine learning models, Random Forest 
demonstrated the highest accuracy (93.4%), fol-
lowed by SVM (92.1%), outperforming logistic re-
gression and KNN (Table 4). 

The target variable for machine-learning classifica-
tion was binary: hearing loss (>25 dB HL in one or 
both ears) versus normal hearing (≤25 dB HL bilat-
erally). In the exposed group (n = 218), 185 partici-
pants (84.86%) had hearing loss (43 unilateral; 142 
bilateral), while 33 participants (15.14%) had nor-
mal hearing. This class distribution was considered 
during model evaluation, and precision, recall, F1-
score, and accuracy were reported to account for 
class imbalance. 
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Table 1: Sociodemographic, Environmental, and Clinical Characteristics of Study Participants in Ku-
marapalayam, Tamil Nadu (N=218) 

Characteristics Exposed Group (n=218) 
(<500m from powerloom) 

Control Group (n=218) 
(>2km from powerloom) 

P Value 

Sociodemographic Factors 
Age, years, median (min-max) 64.0 (60.0-90.0) 64.5 (60-90) 0.4815 
Age categories, n (%)   0.6948 

60-65 years 130 (59.6) 135 (61.9)  
66-70 years 30 (13.8) 39 (17.9)  
71-75 years 28 (12.8) 22 (10.1)  
>75 years 30 (13.8) 22 (10.1)  

Sex, n (%)   0.0534 
Male 49 (22.5) 38 (17.4)  
Female 169 (77.5) 180 (82.6)  

Exposure Parameters 
Duration of residence, years 21.0 (3.0-48.0) 18 (3-41) 0.037 
3-10 years, n (%) 78 (35.8) 30 (28.3) 

 

11-20 years, n (%) 47 (21.6) 34 (32.1)  
21-30 years, n (%) 32 (14.7) 29 (27.4)  
>30 years, n (%) 61 (28.0) 13 (12.2)  

Environmental Noise Measurements    
Average noise level at residence, dB 77.66 ± 5.67 52.35±3.95 

 

Health And Lifestyle Factors 
Current smoker, n (%) 49 (22.5) 38 (17.4) 0.0534 
Alcohol use, n (%) 44 (20.2) 33 (15.1) 0.1162 
Tinnitus, n (%) 52 (23.9) 18 (8.3) <0.001 
Hyperacusis, n (%) 31 (14.2) 8 (3.7) <0.001 

WHO: World Health Organization continuous variables presented as Mean±SD or median (min-max) based on distribution on P values; 
Independent t-test/Mann-Whitney U test for continuous; χ2 test for categorical variables 

 

Table 2: Hearing outcome distribution among study participants with 95% Confidence Intervals (CI) 

Outcome Exposed Group (n=218)  Control Group (n=218) 
Cases (%) Confidence Interval  Control (%) Confidence Interval 

Normal hearing (<25 dB HL) 33 (15.14) 10.99% to 20.50%  92 (42.2) 35.84% to 48.84% 
Unilateral hearing loss 43 (19.72) 14.99% to 25.51%  48 (22.02) 17.03% to 27.98% 
Bilateral hearing loss 142 (65.14) 58.60% to 71.15%  78 (35.78) 29.71% to 42.34% 

 

Table 3: Distribution of grade of hearing loss in Powerloom and Non-Powerloom residents 

WHO Grade of hearing loss Powerloom residents (n=218)  Non-Powerloom residents (n=218) 
Right ear (%) Left ear (%)  Right ear (%) Left ear (%) 

Normal 61 (28) 48 (22)  118 (54) 113 (52) 
Mild 74 (34) 74 (34)  66 (30) 73 (33) 
Moderate 60 (27) 67 (31)  31 (14) 23 (11) 
Severe 23 (11) 29 (13)  3 (2) 9 (4) 
 

Table 4: Machine Learning Model Performance for Predicting Hearing Loss in Elderly Residents Ex-
posed to Powerloom Noise 

Model Precision Recall F1-Score Accuracy 
Logistic Regression 81.3% 79.5% 79.9% 79.5% 
Random Forest 93.0% 93.2% 93.0% 93.4% 
SVM (Linear Kernel) 92.2% 92.2% 92.1% 92.1% 
K-Nearest Neighbours 88.3% 88.6% 87.7% 88.6% 
 

Receiver Operating Characteristic (ROC) (Figure 1) 
curves illustrating the discriminatory performance of 
the four supervised machine learning models Lo-
gistic Regression, Support Vector Machine (Linear 
Kernel), K-Nearest Neighbors (k = 5), and Random 
Forest in predicting hearing loss among elderly resi-
dents exposed to powerloom-associated environ-
mental noise. The x-axis represents the False Positive 

Rate (1 - Specificity), and the y-axis represents the 
True Positive Rate (Sensitivity). The area under the 
ROC curve (AUC) quantifies model accuracy, with 
higher AUC values indicating superior classification 
performance. The Random Forest model demon-
strated the highest AUC, consistent with its highest 
accuracy (93.4%), precision (93.0%), recall (93.2%), 
and F1-score (93.0%), followed by SVM and KNN. 
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The ROC curves highlight the strong predictive capa-
bility of ensemble methods for community-level 
hearing loss risk stratification. The curves were gen-
erated using the study dataset of powerloom-
exposed elderly participants (n = 218). 

Confusion matrix (figure 2) depicting the classifica-
tion performance of the Random Forest model in 
predicting hearing loss (hearing threshold >25 dB HL 
in one or both ears) versus normal hearing among 
elderly participants. The x-axis denotes the predicted 
class (hearing loss vs normal hearing), and the y-axis 
denotes the actual observed class. The matrix dis-
plays the number of true positives (correctly identi-

fied hearing-loss cases), true negatives (correctly 
identified normal-hearing cases), false positives 
(normal individuals misclassified as hearing loss), 
and false negatives (hearing-loss individuals misclas-
sified as normal). The high proportion of true posi-
tive and true negative classifications reflects the 
model’s excellent discrimination ability, further sup-
ported by its overall accuracy of 93.4%. This figure 
supports the utility of Random Forest modeling as a 
reliable tool for early detection of noise-induced 
hearing loss in community settings. This matrix was 
derived from the study dataset of powerloom-
exposed elderly residents (n = 218). 

 

 

Figure 1: ROC Curve for Model Performance in 
Predicting Type of Hearing Loss 

 

Figure 2: Confusion Matrix for Random Forest 
Model Performance 

 
Figure 3: Feature importance derived from the Random Forest model for predicting hearing loss 
among elderly residents 
 
Feature importance values represent the relative 
contribution of each predictor to the model’s classifi-
cation of hearing loss status (figure 3). The x-axis 
represents the relative feature importance score 

(mean decrease in impurity), and the y-axis lists the 
predictor variables included in the model. Higher 
importance scores indicate greater influence on 
model predictions. Importance estimates were calcu-
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lated using the mean decrease in impurity across all 
decision trees in the Random Forest algorithm. These 
values reflect internal model behavior and should be 
interpreted as associative rather than causal rela-
tionships. Feature importance was computed using 
the study dataset of powerloom-exposed elderly par-
ticipants (n = 218). 
 

DISCUSSION 

The present study demonstrates a significantly high-
er prevalence of bilateral hearing loss among elderly 
residents living near powerloom industries (65.14%) 
compared to control populations (35.18%), with a 
Random Forest machine learning model achieving 
93.0% accuracy in predicting hearing loss. These 
findings contribute to the growing body of evidence 
linking environmental noise exposure to accelerated 
hearing impairment in aging populations and high-
light the potential of machine learning approaches 
for community-based hearing health surveillance. 

Contextualization Within Environmental Noise 
Research: The exposed elderly group showed a 
higher bilateral hearing loss prevalence (65.14%) 
than community estimates such as the 38.3% report-
ed by Chen X et al.9 (2023), who also identified in-
creased impairment risk near major roadways. The 
recorded noise levels, ranging from 101.6 to 109.8 
dB(A), were evaluated in comparison with OSHA and 
WHO occupational noise exposure standards.10 

The control group prevalence (35.18%) is consistent 
with age-related hearing loss patterns in developing 
regions, with Verma RR et al.11 (2021) reported that 
hearing impairment prevalence was higher among 
elderly populations in India compared with younger 
age groups. 

Machine Learning Performance in Context: Our 
Random Forest model achieved 88.6% accuracy, 
comparable to recent studies, despite using only de-
mographic and exposure variables rather than com-
plex audiometric data, similar to Machine learning 
models using NHANES data effectively predicted 
hearing loss and hearing thresholds, with Light Gra-
dient Boosting showing the best performance (80.1% 
accuracy for mild hearing loss and >86% for higher 
thresholds); age, gender, blood pressure, and waist 
circumference emerged as key factors, highlighting 
the potential for early, risk-based hearing loss detec-
tion.12 

Industrial Noise Exposure and Community 
Health: Textile mill weavers exposed to 101.3 ± 2.7 
dBA show reduced hearing acuity.13 Our community-
based study extends this concern to nearby elderly 
residents, with 67% prevalence compared to 71.6% 
among workers,14 highlighting cumulative health im-
pacts from long-term residential exposure. Industrial 
noise often exceeds CPCB residential limits (55 dB 
day/45 dB night),15 and inadequate buffer zones like-
ly contribute to the elevated hearing loss observed. 

Interaction Between Aging and Noise Exposure: 
Longitudinal research indicates that aging-related 
decline interacts with prior noise exposure. In the 
Framingham cohort, noise-affected ears showed fast-
er threshold deterioration across frequencies, sug-
gesting heightened vulnerability rather than a direct 
causal pathway.16 Shared mechanisms such as oxida-
tive stress, mitochondrial dysfunction, synaptopathy, 
and cochlear vascular compromise link presbycusis 
and NIHL. In C57BL/6 mice, early noise exposure in-
tensified later oxidative stress and vascular dysregu-
lation through pathways involving antioxidant im-
balance and HIF-1α/VEGFC signaling.4 Chronic noise 
also induces central auditory changes.17 Early-life 
subclinical damage can prime delayed neural degen-
eration, accelerating age-related decline.18 

Public Health Implications and Interventions: The 
hearing loss burden observed warrants coordinated 
public health action. The societal economic burden of 
age-related hearing loss is estimated at approximate-
ly $297,000 per affected individual over their life-
time. This substantial cost stems primarily from re-
duced employment opportunities, diminished work-
place productivity, and elevated healthcare 
expenditures.19 In 2019, the global economic burden 
of hearing loss exceeded $981 billion (PPP-adjusted), 
with 47% attributable to quality-of-life losses and 
32% to additional health-related costs; 57% of total 
costs occurred in low- and middle-income countries, 
6.5% were incurred among children aged 0-14 years, 
and a modelled 5% reduction in prevalence was as-
sociated with potential savings of approximately $49 
billion worldwide.. Even modest decreases in the 
prevalence or severity of hearing loss could prevent 
significant economic burdens on society.20 

Mobile Audiometry Applications: Mobile audiome-
try supports community screening as a feasible op-
tion in resource-limited settings. Validation work 
from South Africa shows smartphone-based audiom-
etry can perform reliably in untreated primary 
health-care clinics, with conventional thresholds ex-
ceeding 15 dB HL corresponding to smartphone 
thresholds within ≤10 dB in 92.9% of cases (average 
difference -1.0 dB ± 7.1 SD).21 Yalamanchali S et al.22 
(2022) reported 89% sensitivity and 70% specificity 
in Indian populations. However, the lack of frequen-
cy-specific thresholds in our study limits distinguish-
ing the NIHL 4 kHz notch from presbycusis’ gradual 
slope.23 

Comparison with Regional Studies: Regional stud-
ies show higher hearing loss in lower- and middle-
income countries due to limited care and greater 
noise exposure;24 our semi-urban industrial setting 
reflects this combined risk. 

Comparison With Similar Indian NIHL Studies: 
Industrial and construction studies similarly report 
significant high-frequency loss, dose-response pat-
terns, and modifiable workplace contributors.25,26 
Powerloom research further confirms the auditory 
impact of long-term loom noise.14,27 Most Indian 
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NIHL research focuses on workers in transportation, 
industry, construction, or powerloom sectors, 
whereas our study examines non-workers communi-
ty residents living near powerloom units. Evidence of 
gradual, bilateral loss in our sample indicates that 
community-level noise from powerlooms can ap-
proximate occupational intensity, underscoring the 
need to address residential noise regulation and 
screening. 
 

STRENGTHS AND LIMITATIONS 

Several limitations warrant consideration in inter-
preting our findings. The cross-sectional design pre-
cludes causal inference and cannot establish whether 
current hearing loss resulted from cumulative life-
time exposure or recent industrial noise. Longitudi-
nal studies tracking hearing changes in relation to 
documented noise exposure would strengthen cau-
sality assessment.28 The use of mobile audiometry, 
while enabling community-based screening, lacks the 
precision of clinical audiometry performed in sound-
treated booths. This may have introduced misclassi-
fication bias, particularly in distinguishing mild de-
grees of impairment. The absence of frequency-
specific audiometric data represents a significant 
limitation, as it prevented detailed characterization 
of audiometric notch patterns typically associated 
with noise-induced hearing loss. The study did not 
assess lifetime occupational or recreational noise ex-
posure, which limits the ability to attribute observed 
hearing loss solely to current industrial noise 
sources. Individual noise dosimetry was not con-
ducted, preventing quantification of dose-response 
relationships. Potential selection bias may also exist 
if healthier elderly individuals were more likely to 
participate. 

The study’s strengths include its community-based 
design, robust sample size, and use of validated mo-
bile audiometry for real-world applicability. Addi-
tionally, integrating machine learning models en-
hanced predictive accuracy for early detection of 
hearing loss in vulnerable populations. 

This study highlights several priorities for future re-
search. Longitudinal cohort studies with baseline au-
diometry and regular follow-up would clarify the 
temporal relationship between industrial noise ex-
posure and hearing loss progression. Environmental 
noise mapping combined with personal dosimetry 
would enable dose-response modeling. Inclusion of 
complete frequency-specific audiometric profiles 
would support more precise differentiation between 
presbycusis and noise-induced patterns. Incorporat-
ing biomarkers of oxidative stress and inflammation 
may elucidate mechanistic pathways underlying the 
interaction between noise and aging. Implementa-
tion research should evaluate culturally appropriate 
hearing conservation interventions for communities 
near industrial settings. The high accuracy of ma-
chine learning models suggests strong potential for 

risk-prediction tools that integrate environmental 
exposure data, demographic characteristics, and 
symptom-based screening. 
 

CONCLUSION 

The present study demonstrates a significantly high-
er prevalence of hearing loss among elderly resi-
dents living near powerloom industries, indicating 
that prolonged exposure to elevated environmental 
noise poses a substantial public health concern. Alt-
hough the machine learning model showed encour-
aging predictive performance, these results should 
be interpreted as preliminary and require external 
validation before broader application. The findings 
highlight the need for targeted community screening 
programs for older adults in high-noise localities, 
stricter enforcement of residential noise regulations, 
and implementation of zoning strategies to mitigate 
industrial noise encroachment into living areas. 
Strengthening environmental noise surveillance and 
integrating periodic hearing assessment into geriat-
ric care pathways may help reduce the long-term 
burden of preventable auditory impairment in indus-
trially adjacent communities. Future research should 
prioritize longitudinal designs and detailed exposure 
assessments to better characterize the progression 
of noise-related hearing decline. 
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