iALERTS: A Pragmatic Pilot Study of a Clinical Decision Support System for Long COVID Care
DOI:
https://doi.org/10.55489/njcm.161120255983Keywords:
Long COVID, Clinical Decision Support System, Digital Health, Symptom Monitoring, Pilot Study, Mixed-Methods Evaluation, PRISM Framework, Content-Context-Process FrameworkAbstract
Background: Long COVID is a significant public health challenge due to its persistent multisystem symptoms. Few structured tools exist to support clinicians in identifying, stratifying, and managing patients at risk. This study reports the pilot implementation and evaluation of iALERTS, a clinical decision support system (CDSS) developed for real-time risk stratification and longitudinal management of Long COVID.
Methods: In this mixed-methods pragmatic pilot study, 148 healthcare providers underwent structured training and readiness testing. Real-world data from 120 patients with post-COVID symptoms were entered into iALERTS. Evaluation, guided by PRISM and Content-Context-Process frameworks, included descriptive statistics as well as qualitative interviews and observations to assess technical accuracy, clinical integration, and user acceptance.
Results: Data completeness exceeded 98%, with 100% concordance between system predictions and clinician judgment. Common symptoms were fatigue (72%), breathlessness (54%), brain fog (39%), headache (38%), and myalgia (36%). Providers reported high confidence in accuracy (mean = 4.3), positive workflow integration (mean = 4.0), and strong user acceptance (mean = 4.2).
Conclusion: iALERTS demonstrated feasibility, reliability, and strong endorsement in this pilot. Limitations include its single-center design and short duration. Further multi-site studies are needed to validate scalability and long-term utility.
References
Koc HC, Xiao J, Liu W, Li Y, Chen G. Long COVID and its management. Int J Biol Sci. 2022;18(12):4768-4780. DOI: https://doi.org/10.7150/ijbs.75056 PMid:35874958 PMCid:PMC9305273
Zeraatkar D, Ling M, Kirsh S, et al. Interventions for the management of long covid (post-covid condition): living systematic review. BMJ. 2024;387:e081318. DOI: https://doi.org/10.1136/bmj-2024-081318 PMid:39603702 PMCid:PMC11600537
Chaudhry D, Khandelwal S, Bahadur C, et al. Prevalence of long COVID symptoms in Haryana, India: a cross-sectional follow-up study. Lancet Reg Health Southeast Asia. 2024;25:100395. DOI: https://doi.org/10.1016/j.lansea.2024.100395 PMid:38586062 PMCid:PMC10998228
J VK, Koshy JM, S D, et al. Prevalence and predictors of long COVID at 1 year in a cohort of hospitalized patients: A multicentric qualitative and quantitative study. PLoS One. 2025;20(4):e0320643. DOI: https://doi.org/10.1371/journal.pone.0320643 PMid:40215236 PMCid:PMC11990506
Surapaneni KM, Singhal M, Joshi A. Design, development and implementation of iALERTS (informatics analytics for long-term evaluation and repercussions tracking of SARS-CoV-2 infection): A research protocol. J Clin Diagn Res. 2025;19(2):LK01-LK07. DOI: https://doi.org/10.7860/JCDR/2025/72559.20601
Surapaneni KM, Singhal M, Joshi A. Decision-making logic model for risk stratification using iALERTS (Informatics Analytics for Long-Term Evaluation and Repercussions Tracking Of SARS-Cov-2 Infection). Natl J Community Med. 2025;16(9):867-878. DOI: https://doi.org/10.55489/njcm.160920255736
Kilsdonk E, Peute LW, Jaspers MW. Factors influencing implementation success of guideline-based clinical decision support systems: a systematic review and gaps analysis. Int J Med Inform. 2017;98:56-64. DOI: https://doi.org/10.1016/j.ijmedinf.2016.12.001 PMid:28034413
Abell B, Naicker S, Rodwell D, et al. Identifying barriers and facilitators to successful implementation of computerized clinical decision support systems in hospitals: a NASSS framework-informed scoping review. Implement Sci. 2023;18(1):32. DOI: https://doi.org/10.1186/s13012-023-01287-y PMid:37495997 PMCid:PMC10373265
Wong, A., Otles, E., Donnelly, J. P., Krumm, A., McCullough, J., DeTroyer-Cooley, O., Pestrue, J et al. External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA internal medicine. 2021;181(8):1065-1070. DOI: https://doi.org/10.1001/jamainternmed.2021.2626 Erratum in: JAMA Intern Med. 2021 Aug 1;181(8):1144. DOI: https://doi.org/10.1001/jamainternmed.2021.3907. PMid:34152373 PMCid:PMC8218233
Ostermayer DG, Braunheim B, Mehta AM, Ward J, Andrabi S, Sirajuddin AM. External validation of the Epic sepsis predictive model in 2 county emergency departments. JAMIA Open. 2024 Nov 13;7(4):ooae133. DOI: https://doi.org/10.1093/jamiaopen/ooae133 PMid:39545248 PMCid:PMC11560849
Fathauer L, Meek J. Initial implementation and evaluation of a Hepatitis C treatment clinical decision support system (CDSS). Appl Clin Inform. 2012;3(3):337-348. DOI: https://doi.org/10.4338/ACI-2012-04-RA-0012 PMid:23646082 PMCid:PMC3613024
Liberati EG, Ruggiero F, Galuppo L, et al. What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation. Implement Sci. 2017;12(1):113. DOI: https://doi.org/10.1186/s13012-017-0644-2 PMid:28915822 PMCid:PMC5602839
Trivedi MH, Daly EJ, Kern JK, et al. Barriers to implementation of a computerized decision support system for depression: an observational report on lessons learned in "real world" clinical settings. BMC Med Inform Decis Mak. 2009;9:6. DOI: https://doi.org/10.1186/1472-6947-9-6 PMid:19159458 PMCid:PMC2639574
Damoiseaux-Volman BA, van der Velde N, Ruige SG, Romijn JA, Abu-Hanna A, Medlock S. Effect of interventions with a clinical decision support system for hospitalized older patients: systematic review mapping implementation and design factors. JMIR Medical Informatics. 2021;9(7):e28023. DOI: https://doi.org/10.2196/28023 PMid:34269682 PMCid:PMC8325084
Castillo RS, Kelemen A. Considerations for a successful clinical decision support system. Comput Inform Nurs. 2013;31(7):319-326. DOI: https://doi.org/10.1097/NXN.0b013e3182997a9c PMid:23774450
Osheroff JA, Teich J, Levick D, et al. Improving outcomes with clinical decision support: an implementer's guide. 2nd ed. Chicago: HIMSS Publishing; 2012.
Surapaneni KM. iALERTS readiness assurance module. figshare; 2025. DOI: https://doi.org/10.6084/m9.figshare.30069550
Trinkley KE, Kahn MG, Bennett TD, et al. Integrating the Practical Robust Implementation and Sustainability Model with best practices in clinical decision support design: implementation science approach. J Med Internet Res. 2020;22(10):e19676. DOI: https://doi.org/10.2196/19676 PMid:33118943 PMCid:PMC7661234
Laka M, Carter D, Merlin T. Evaluating clinical decision support software (CDSS): challenges for robust evidence generation. Int J Technol Assess Health Care. 2024;40(1):e16. DOI: https://doi.org/10.1017/S0266462324000059 PMid:38328905 PMCid:PMC11570080
Crook H, Raza S, Nowell J, et al. Long covid-mechanisms, risk factors, and management. BMJ. 2021;374:n1648. DOI: https://doi.org/10.1136/bmj.n1648 PMid:34312178
Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. DOI: https://doi.org/10.1038/s41579-022-00846-2 PMid:36639608 PMCid:PMC9839201
Fuller T, Mamani RF, Santos HF, et al. Sex, vaccination status, and comorbidities influence long COVID persistence. J Infect Public Health. 2024;17(11):102562. DOI: https://doi.org/10.1016/j.jiph.2024.102562 PMid:39418956
Jones C, Thornton J, Wyatt JC. Enhancing trust in clinical decision support systems: a framework for developers. BMJ Health Care Inform. 2021;28(1):e100247. DOI: https://doi.org/10.1136/bmjhci-2020-100247 PMid:34088721 PMCid:PMC8183267
Richardson JE, Middleton B, Platt JE, et al. Building and maintaining trust in clinical decision support: recommendations from the Patient‐Centered CDS Learning Network. Learn Health Syst. 2020;4(2):e10208. DOI: https://doi.org/10.1002/lrh2.10208 PMid:32313835 PMCid:PMC7156865
Subramanian M, Shanmuga Vadivel K, Hatamleh WA, et al. The role of contemporary digital tools and technologies in Covid‐19 crisis: an exploratory analysis. Expert Syst. 2022;39(6):e12834. DOI: https://doi.org/10.1111/exsy.12834 PMid:34898797 PMCid:PMC8646626
Phillips J, Babcock RA, Orbinski J. The digital response to COVID-19: exploring the use of digital technology for information collection, dissemination and social control in a global pandemic. J Bus Contin Emer Plan. 2021;14(4):333-353. DOI: https://doi.org/10.69554/QLQR5882 PMid:33962702
Larsen LB, Sondergaard J, Thomsen JL, et al. Step-wise approach to prevention of chronic diseases in the Danish primary care sector with the use of a personal digital health profile and targeted follow-up-an assessment of attendance. BMC Public Health. 2019;19(1):1092. DOI: https://doi.org/10.1186/s12889-019-7419-4 PMid:31409343 PMCid:PMC6693260
Castaneda C, Nalley K, Mannion C, et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma. 2015;5:4. DOI: https://doi.org/10.1186/s13336-015-0019-3 PMid:25834725 PMCid:PMC4381462
Sim LL, Ban KH, Tan TW, et al. Development of a clinical decision support system for diabetes care: a pilot study. PLoS One. 2017;12(2):e0173021. DOI: https://doi.org/10.1371/journal.pone.0173021 PMid:28235017 PMCid:PMC5325565
Fitriyani NL, Syafrudin M, Alfian G, et al. HDPM: an effective heart disease prediction model for a clinical decision support system. IEEE Access. 2020;8:133034-133050. DOI: https://doi.org/10.1109/ACCESS.2020.3010511
Newton N, Bamgboje-Ayodele A, Forsyth R, et al. Opportunities and challenges associated with the pilot implementation of clinical decision support systems in a rural hospital: a qualitative study. Appl Clin Inform. 2025;16(4):777-788. DOI: https://doi.org/10.1055/a-2581-6236 PMid:40216403 PMCid:PMC12352988
Misro A, Mehta A, Whittington P, et al. From concept to reality: examining India's clinical decision support system (CDSS) challenges & opportunities. medRxiv 2023.04.02.23288046 [preprint]. DOI: https://doi.org/10.1101/2023.04.02.23288046
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Krishna Mohan Surapaneni, Manmohan Singhal, Ashish Joshi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The authors retain the copyright of their article, with first publication rights granted to Medsci Publications.

